

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical



journal homepage: www.elsevier.com/locate/snb

# Growth of $SnO_2/W_{18}O_{49}$ nanowire hierarchical heterostructure and their application as chemical sensor

Shashwati Sen<sup>a,\*</sup>, Prajakta Kanitkar<sup>b</sup>, Ankit Sharma<sup>c</sup>, K.P. Muthe<sup>a</sup>, Ashutosh Rath<sup>d</sup>, S.K. Deshpande<sup>e</sup>, Manmeet Kaur<sup>a</sup>, R.C. Aiyer<sup>b</sup>, S.K. Gupta<sup>a</sup>, J.V. Yakhmi<sup>a</sup>

<sup>a</sup> Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India

<sup>b</sup> Department of Physics, University of Pune, Pune 411007, India

<sup>c</sup> Amity Institute of Nano Technology, Noida 201303, India

<sup>d</sup> Institute of Physics, Sachivalaya Marg, Bhubaneshwar, Orissa 751005, India

<sup>e</sup> UGC-DAE, Consortium for Scientific Research, Mumbai-Centre, Mumbai 400085, India

#### ARTICLE INFO

Article history: Received 30 October 2009 Received in revised form 6 April 2010 Accepted 12 April 2010 Available online 18 April 2010

Keywords: Nanowires Hierarchical heterostructure Hetero-junction Sensors Intragrain Grain-boundary

#### 1. Introduction

## Metal oxide semiconductors are versatile materials due to their diverse properties and functionalities. Bulk properties such as piezoelectricity, chemical sensing, and photoconductivity of these materials are enhanced in their Quasi one-dimensional (Q1D) form. Interestingly, Q1D structures can be used as template for the growth of other nanostructures resulting in novel hierarchical nanoheterostructures with enhanced functionality.

Growth of various nanowire heterostructures has been reported for different potential applications [1–4]. Heterostructures with p-type Si core and n-type CdS shell were synthesized [1a] by pulsed laser deposition of CdS on Si nanowires and used for the fabrication of light emitting diodes (LED). ZnO tetrapods covered with SnO<sub>2</sub> shells [1b] showed improved luminescence properties. Nanoheterostructures, consisting of  $In_2O_3$  cores and ZnO nanowires grown on them, have been prepared in single step by heating  $In_2O_3$ , ZnO and graphite [2a]. ZnO nanorods have been

#### ABSTRACT

Hierarchical heterostructures consisting of  $W_{18}O_{49}$  nanowires grown on  $SnO_2$  nanowires have been prepared by sequential thermal evaporation of tin and tungsten under partial oxygen atmosphere. Sensors made using isolated heterostructure nanowires showed superior selectivity for the detection of chlorine in comparison to isolated pure  $SnO_2$  nanowires as well as mat type films prepared using heterostructure nanowires. Improved response compared to mat type films arises due to different sensing mechanisms of chlorine arising from its adsorption or replacement of oxygen. On the other hand better selectivity in comparison to isolated  $SnO_2$  nanowires has been attributed to transfer of electrons across heterojunction from  $W_{18}O_{49}$  to  $SnO_2$  and lower sensitivity of  $W_{18}O_{49}$  to  $H_2S$ . The results show potential of tailored hierarchical nanoheterostructures for the fabrication of gas sensors.

© 2010 Elsevier B.V. All rights reserved.

grown on carbon nanotubes (CNT) and GaN nanowires [2b] for fabrication of LED devices. While many nanoheterostructures have been shown to have potential for applications, very few actual applications have been demonstrated. In very few studies, potential of nanoheterostructures for gas sensing has been reported. Chen et al. [5] have shown good sensitivity of thin films of  $SnO_2/\alpha$ -Fe<sub>2</sub>O<sub>3</sub> heterostructures to ethanol (0-500 ppm range) at operating temperatures between 250 °C and 350 °C. Similarly, Zhua et al. [6] have prepared heterostructures consisting of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> cores and ZnO shells. Films of these heterostructure also showed good sensitivity to ethanol at 220 °C. Clearly there is a need to carry out further studies in this area. In this paper, we report the preparation of SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> hierarchical heterostructures and their application as selective chlorine sensors operating at room temperature. Heterostructures of SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> have been selected for study as SnO<sub>2</sub> is one of the most important material for gas sensing applications [7] and oxides of tungsten including  $WO_3$  and  $W_{18}O_{49}$  have shown promise for the detection of gases [8].

Nanostructured materials have been of interest for gas sensing applications due to two reasons. Firstly, due to increased surface area and defect structure these have higher reactivity leading to better sensor characteristics. Secondly, it is possible to fabricate miniature sensors using individual Q1D structures [9]. Two different kind of sensors based on 1D structures have been reported: (a)

<sup>\*</sup> Corresponding author at: Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mod Lab II floor, Trombay, Mumbai 400085, India. Tel.: +91 22 25595839; fax: +91 22 25505296.

E-mail address: shash@barc.gov.in (S. Sen).

<sup>0925-4005/\$ -</sup> see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.snb.2010.04.016

films of nanostructured materials typically prepared by putting few drops of suspension of material in organic solvent on an insulating substrate and (b) isolated nanowire sensors prepared using techniques such as focused ion beam (FIB) [10] and dielectrophoresis [11].

Sensors based on nanostructured films have been reported using different oxide materials. In a study by Wan et al. [12], ZnO nanowire films were reported to show good sensitivity to ethanol in 1–200 ppm range at operating temperature of 300 °C. Mats of randomly oriented SnO<sub>2</sub> nanowires [13] showed good sensitivity to 2-propanol at operating temperature of 300 °C. Tungsten oxide nanowire network has been reported for the detection of H<sub>2</sub>S and NO<sub>2</sub> (50 ppb concentration) gases [8a,14] and films of  $In_2O_3$ nanowires showed sensitivity to NO<sub>2</sub> in ppb range [15]. Bundles of W<sub>18</sub>O<sub>49</sub> nanowires have been reported to show sensitivity to ppb level of ammonia at room temperature [8b]. In a review article, hierarchical and hollow nanostructures have been shown to be very promising for gas sensor applications [16]. Some of the isolated nanowire sensors reported in the literature are (a) ZnO nanowire sensors fabricated using FIB/SEM with high sensitivity to hydrogen at 10 ppm concentration [10] and (b) SnO<sub>2</sub> nanowires having good sensitivity to hydrogen [17].

In the present study, hierarchical heterostructures consisting of small  $W_{18}O_{49}$  nanowires grown on larger  $SnO_2$  nanowires have been prepared resulting in heterostructure nanowires (HSNW). These HSNW have been employed for preparation of isolated HSNW sensors as well as mat type film sensors. The results have been compared with similar pure  $SnO_2$  nanowire sensors. This is possibly the first study where advantage of nanoheterostructures for room temperature detection of a gas has been shown and isolated NWHS have been used for sensing of gases. The study shows that tailored nanoheterostructures may yield gas sensors with improved characteristics.

#### 2. Experimental

The growth of SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> hierarchical heterostructures was carried out in two steps. In the first step, SnO<sub>2</sub> nanowires (mixed with nanobelts) were grown by thermal evaporation of Sn in a horizontal tubular furnace. Sn powder (99.99% pure) was loaded in an alumina boat and was placed at the centre of a quartz tube. Temperature of the boat was raised to 900 °C at a rate of 300 °C/h in the presence of Ar and 1% O<sub>2</sub> gas flow. The growth was carried out for 1 h at 900 °C. It may be noted that the melting point of Sn is 232 °C, but it needs temperature of 997 °C to attain a vapor pressure of 10<sup>-4</sup> mbar, while tin oxide (melting point 1127 °C) sublimes with a vapor pressure of  $10^{-4}$  mbar at 350 °C. Therefore, the evaporation of Sn occurs after its oxidation. After growth, the furnace was cooled to room temperature at a rate of 300 °C/h. SnO<sub>2</sub> nanowires were deposited on upper side walls of the alumina boat [18]. In the second step, tungsten oxide nanowires were grown on SnO<sub>2</sub> nanowires by thermal evaporation of tungsten in a vacuum deposition system in the presence of air at a pressure of  $2.5 \times 10^{-4}$  mbar [19]. A collection of SnO<sub>2</sub> nanowires was placed at a distance of 2 cm from tungsten filament and the system was evacuated to  $2 \times 10^{-5}$  mbar. The depositions were carried out for 30 min at a source temperature of ~1965 °C. The temperature of the filament was measured using a pyrometer (RAYTEK make). The pressure inside the chamber was maintained by controlled flow of air through a needle valve. The deposition occurs by slow oxidation of tungsten filament followed by evaporation, as oxides of tungsten are volatile. For example, a vapor pressure of 10<sup>-4</sup> mbar occurs at 980 °C for WO<sub>3</sub> compared to 2760 °C for tungsten metal (melting point of tungsten is  $3422 \,^{\circ}$ C and that of WO<sub>3</sub> is  $1473 \,^{\circ}$ C). The substrates with SnO<sub>2</sub> nanowires were not intentionally heated

but during deposition their temperature increased to 700 °C. A uniform blue deposit was observed on the SnO<sub>2</sub> nanowires after the deposition. No metal catalyst was used during the synthesis of the heterostructures and their growth is attributed to vapor solid mechanism. To study effect of growth parameters, the depositions of W<sub>18</sub>O<sub>49</sub> were also carried out at different filament temperatures between 1850 °C and 2050 °C and at pressures between  $5 \times 10^{-5}$  mbar and  $7 \times 10^{-4}$  mbar. For comparison, W<sub>18</sub>O<sub>49</sub> was also deposited on bare alumina substrates in a manner similar to the growth of nanowires. In this case, growth of thin films instead of nanowires was observed.

Morphology of the samples was investigated using scanning electron microscopy (SEM) (TESCAN make VEGA MV2300T/40 system) and transmission electron microscopy (TEM) (JEOL 2000 FX) techniques. The crystalline nature and phase formation were studied by grazing angle X-ray diffraction (XRD) measurements. The chemical state of the hierarchical nanostructures were determined by X-ray photoelectron spectroscopy (XPS) analysis carried out using Al Ka (1486.6 eV) radiation (XPS system consisting of X-ray source Model CX700 and MAC-2 electron analyzer). The Raman spectra were recorded at room temperature using 532 nm line from a diode pumped Nd<sup>3+</sup>:YAG laser (SUWTECH laser, model G-SLM-020 from Shanghai Uniwave Technology Co. Ltd.) operated at a power of 15 mW. Emitted light was collected in back-scattered geometry and detected using 0.9 m monochromator and cooled CCD (Andor Technology) detector with entrance slit width of 50 µm.

Two different types of sensors (mat type and isolated HSNW type) were fabricated using heterostructures. For preparation of mat type (film) sensors, two gold electrodes were deposited on alumina substrates by thermal evaporation. Heterostructure nanowires were dispersed in ethanol and then coated on alumina substrates to yield a film of heterostructures. Resistance of the film between two gold electrodes was measured to study response to gases. Isolated heterostructure nanowire (also called single HSNW) sensors were fabricated by dispersing very small quantity of heterostructures in ethanol and placing a drop of this dilute suspension on a glass slide. Single HSNW were separated using optical microscope (visibility under optical microscope was improved by some ethanol sticking to heterostructures by surface tension) and a metal mask was aligned on isolated nanowires for deposition of two gold electrodes with  $12 \,\mu m$  spacing ( $12 \,\mu m$  metal wire was used for this purpose). Gold deposition was carried out by thermal evaporation technique. Response of sensors to various gases was measured using a system described earlier [20]. Briefly, sensors were placed in a 250 ml container and measured quantity of gas was injected using a syringe so as to yield the desired concentration of gas in the container. Current through nanowires was measured (under different atmospheres) for a constant voltage applied across the gold pads using Kiethley picoammeter (model 6487 picoammeter/voltage source). The response was calculated as  $S = I_g/I_a$ ; where,  $I_g$  is the current in the presence of gas and  $I_a$  is the current in air. The response and recovery times were also determined on exposure to gases. For this purpose, response time is defined as the time taken to attain 90% of the maximum change in conductance on exposure to gas and the recovery time is the time taken to recover to within 10% of the base conductance after removal of gas. For comparison, response was also measured on sensors made using single nanowires and mat type films of SnO<sub>2</sub> (prepared in a manner similar to corresponding heterostructure sensors).

## 3. Results and discussion

SEM micrographs of SnO<sub>2</sub> nanowires/nanobelts and heterostructures (prepared at source temperature of 1965 °C and air



Fig. 1. SEM images of (a) pure SnO<sub>2</sub> nanowires, (b-c) SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> heterostructure nanowires at low and high magnification and (d) highly magnified image of W<sub>18</sub>O<sub>49</sub> nanowires.

pressure of  $2.5 \times 10^{-4}$  mbar) are shown in Fig. 1. SnO<sub>2</sub> nanowires were found to have diameter in 70–300 nm range and length in 5–100  $\mu$ m range (Fig. 1a). In heterostructures, a dense growth of tungsten oxide nanowires with ~50 nm diameter and more than 2  $\mu$ m length was observed on SnO<sub>2</sub> nanowires.

Typical XRD spectrum of heterostructures (Fig. 2) showed presence of SnO<sub>2</sub> (rutile phase with *a*=4.74 and *c*=3.1885 Å) and monoclinic W<sub>18</sub>O<sub>49</sub> phases (with *a*=18.33, *b*=3.786, *c*=14.04 Å) [19]. No mixed or impurity phases were detected indicating heterostructures with pure SnO<sub>2</sub> cores and W<sub>18</sub>O<sub>49</sub> branches. Annealing of heterostructures in oxygen atmosphere at 500 °C for 1 h changed the sample color from blue to yellow and the XRD spectra (not shown here) indicated conversion of W<sub>18</sub>O<sub>49</sub> to WO<sub>3</sub> without changing the morphology of the heterostructures. All further characterization and gas sensing measurements were carried out on as grown heterostructures.

TEM images of heterostructures are shown in Fig. 3. Low magnification TEM in Fig. 3a shows that  $W_{18}O_{49}$  nanowires have smooth



Fig. 2. XRD spectra of SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> nanowire heterostructures.

surface and small reduction in diameter from root to the tip. High resolution TEM confirmed sharp interface between  $SnO_2$  and  $W_{18}O_{49}$  (Fig. 3b) and also showed that  $W_{18}O_{49}$  nanowires grow along (0 1 0) direction (Fig. 3c).

Effect of growth conditions on the nature of W<sub>18</sub>O<sub>49</sub> nanowires (on SnO<sub>2</sub> nanowires) was investigated and the results are shown in Fig. 4. Density, diameter and length of W<sub>18</sub>O<sub>49</sub> nanowires was found to increase with increase in pressure (Fig. 4a-c and Fig. 1b). This is understandable as increase in pressure leads to higher oxidation rate and thereby increased evaporation rate. Similar results were obtained by increase of filament (tungsten) temperature at fixed pressure. On increasing the temperature of the W foil to 2050 °C (pressure =  $2.5 \times 10^{-4}$  mbar), we observed that SnO<sub>2</sub> nanowires get coated by a thick layer of  $W_{18}O_{49}$  resulting in core-shell like structure of SnO<sub>2</sub>-W<sub>18</sub>O<sub>49</sub> (Fig. 4d). The results show that the morphology and thus functionality of these hierarchical structures may be tuned by controlling the growth parameters. Further characterization and studies have been carried out on heterostructures formed by deposition of  $W_{18}O_{49}$  at a pressure of  $2.5 \times 10^{-4}$  mbar and source temperature of 1965 °C.

SEM images at different stages of growth of W<sub>18</sub>O<sub>49</sub> nanowires (5, 15 and 30 min) were acquired to visualize nucleation and growth morphologies and the results are shown in Fig. 5. It is seen that the size of the nuclei is much larger than diameter of the nanowires. This is in agreement with the growth mechanism of  $W_{18}O_{49}$  nanowires proposed by Thangala et al. [21] where the growth occurs by nucleation of WO<sub>2</sub> clusters followed by precipitation of WO<sub>3-x</sub> crystals having tip of considerably smaller dimensions. Enhanced adsorption of WO<sub>2</sub>/WO<sub>3</sub> species on the tip was proposed to result in the growth of nanowires. Partial pressure of oxygen (in  $10^{-5}$  to  $10^{-3}$  mbar range) employed in present study is much less than 0.1-10 mbar used by Thangala et al. [21] and this may help in nucleation of oxygen deficient WO<sub>2</sub> nuclei. We may add that similar vapor-solid mechanism of 1D growth promoted by sub-oxide tip has been used to explain growth of other oxide nanowires like SiO<sub>2</sub> [22]. The mechanism also explains the forma-



Fig. 3. (a) TEM image of a typical SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> nanowire heterostructure and HRTEM images showing (b) sharp interface between a typical SnO<sub>2</sub> nanowire and W<sub>18</sub>O<sub>49</sub> nanowire and (c) growth direction of W<sub>18</sub>O<sub>49</sub> nanowires.

tion of core-shell structure (Fig. 4d) at higher tungsten filament temperature ( $\sim$ 2050 °C), as high WO<sub>2</sub> super saturation leads to the growth of a continuous layer of WO<sub>2</sub> on SnO<sub>2</sub> nanowires followed by formation of W<sub>18</sub>O<sub>49</sub> shell.

Raman Spectrum of HSNW (Fig. 6) shows three broad bands at 253, 698 and  $795 \text{ cm}^{-1}$ . The spectrum is very similar to that

reported by Thangala et al. [21] for pure  $W_{18}O_{49}$  phase. Bands at 698 and 795 cm<sup>-1</sup> are assigned to W–O stretching modes while the band at 253 cm<sup>-1</sup> is ascribed to O–W–O bending modes [21,23]. As  $W_{18}O_{49}$  structure contains a wide range of W–O–W bond lengths, the Raman peaks are generally very broad [24]. Interestingly, we do not get any peak corresponding to SnO<sub>2</sub>, as it is covered with



**Fig. 4.** SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> heterostructures grown at filament temperature of 1965 °C in air at (a)  $5 \times 10^{-5}$  mbar, (b)  $9 \times 10^{-5}$  mbar, and (c)  $7 \times 10^{-4}$  mbar pressure. Also shown (d) are typical heterostructures grown at higher filament temperature of 2050 °C and air at pressure of  $2 \times 10^{-4}$  mbar.



Fig. 5. SEM images obtained at different stages of W<sub>18</sub>O<sub>49</sub> nanowires growth: (a) initial SnO<sub>2</sub> nanowires and growth after (b) 5, (b) 15, and (d) 30 min. A schematic diagram corresponding to each stage of growth is also shown below SEM images.

 $W_{18}O_{49}$  nanowires [25]. Raman analysis further indicates absence of interaction of  $W_{18}O_{49}$  with SnO<sub>2</sub>.

XPS spectra of heterostructures are shown in Fig. 7. Sn  $3d_{5/2}$  and  $3d_{3/2}$  peaks show essentially symmetric lines with binding energies at 486.4 and 494.7 eV that are assigned to Sn<sup>4+</sup> in SnO<sub>2</sub>. This indicates that the nanowires consist of pure SnO<sub>2</sub> phase. On the other hand, W 4f spectrum shows a broad peak due to merging of  $4f_{7/2}$  and  $4f_{5/2}$  lines. This has been deconvulated into six peaks indicat-



**Fig. 6.** Raman Spectrum of as deposited  $SnO_2:W_{18}O_{49}$  nanowire heterostructures plotted as intensity of scattered light as function of Raman frequency shift.



**Fig. 7.** XPS spectra of as deposited  $SnO_2:W_{18}O_{49}$  nanowire heterostructures plotted as intensity of electrons as function of binding energy (equal to difference of incident photon energy and kinetic energy of emitted electrons; data plotted after correction for spectrometer work function).

ing tungsten in multiple chemical states of W<sup>+6</sup>, W<sup>5+</sup> and W<sup>4+</sup> as reported in some earlier studies [26,27]. This further confirms that tungsten oxide in W<sub>18</sub>O<sub>49</sub> phase. The O 1 s spectrum has been deconvoluted into two peaks at 530.6 and 532.0 eV that are attributed to inorganic oxides (SnO<sub>2</sub> and WO<sub>3</sub>) and adsorbed oxygen, respectively. There could also be small amount of adsorbed carbonate or hydroxide groups. XPS spectra of the heterostructures also indicate the presence of pure SnO<sub>2</sub> and W<sub>18</sub>O<sub>49</sub> phases and absence of interaction between them.

Isolated HSNW sensors (type-A) were investigated for response to various gases and quite interesting results were obtained. The results were compared with those on mat type heterostructure sensors (type-B) and pure  $SnO_2$  single wire (type-C) and mat type (type-D) sensors. For comparison response of  $W_{18}O_{49}$  thin films was also measured for different gases. The results may be summarized as follows:

- 1. Type A sensors (typical SEM image shown in Fig. 8a) showed very good response and high selectivity for the detection of chlorine at room temperature. Typical response of a sensor to chlorine is shown in Fig. 8b and c. (Here, response is plotted as normalized current  $N_I = I/I_a$ ; where, *I* is the measured current as function of time and  $I_a$  is the current in air; all measurements at a fixed voltage) The sensor shows a response ( $S = I_g/I_a$ ) of ~1.1 for 0.25 ppm and 11.0 for 6 ppm of Cl<sub>2</sub> gas. The response and recovery times for 6 ppm Cl<sub>2</sub> are found to be 4.6 min and 17 min, respectively. The sensors showed a detection limit (concentration where noise is nearly equal to change in resistance) of  $\sim 0.1$  ppm of Cl<sub>2</sub>. The sensors showed negligible response to  $H_2S(S \sim 1.15 \text{ for } 6 \text{ ppm of})$ gas) and no response to CO, NO<sub>x</sub> and NH<sub>3</sub> gases. Apart from high sensitivity and selectivity for chlorine, it is seen that the response is anomalous in that the resistance reduces on exposure to oxidizing gas (chlorine) as is normally observed for reducing gases [18].
- Single wire SnO<sub>2</sub> sensors (Type-C) showed highly increased response for detection of H<sub>2</sub>S but similar response for detection of chlorine (Fig. 9). Both gases showed decrease in resistance similar to single HSNW sensor indicating anomalous response to chlorine in this case as well.
- Both of the mat type sensors (types B and D) showed increase in resistance (Fig. 10b and d) for chlorine and decrease for H<sub>2</sub>S (Fig. 10a and c) as is normally expected on exposure of n-type semiconductor sensors to oxidizing and reducing gases, respectively [28].
- 4. Response of  $W_{18}O_{49}$  thin films on exposure to 1 ppm of  $Cl_2$  and 20 ppm of  $H_2S$  (data not shown here) was found to be 0.8 and 1.01, respectively. No measurable response was found on exposure to 1 ppm of  $H_2S$  gas.





**Fig. 8.** (a) Single heterostructure nanowire aligned between two gold electrodes for gas sensitivity measurements. Inset shows expanded view of heterostructure. (b) and (c) Normalized current ( $N_I = I/I_a$ ) as a function of time for an isolated HSNW sensor on exposure to different concentrations of Cl<sub>2</sub> gas at room temperature.

First, we try to understand anomalous response to chlorine for single wire sensors of pure  $SnO_2$  and HSNW. We note that response of polycrystalline semiconductor sensors generally has two distinct contributions, i.e. from intragrain regions and grain boundaries. Single wire sensors have only intragrain contribution while mat type sensors have both intragrain and grain boundary contributions. Comparison of mat type and single wire responses indicates that grain boundary regions have normal response to chlorine while intragrain contribution is anomalous. Four different interactions of



**Fig. 9.** Normalized current  $(N_I = I/I_a)$  as a function of time for pure SnO<sub>2</sub> single nanowire sensor on exposure to (a) 4 ppm Cl<sub>2</sub> and (b) 4 ppm H<sub>2</sub>S gas at room temperature.

chlorine with semiconductor oxides have been reported [29]

$$\frac{1}{2}Cl_2 + O_{(ad)}^{2-} \to Cl_{(ad)}^- + \frac{1}{2}O_2 + e^-$$
(1)

$$\frac{1}{2}Cl_2 + O_0^{2-} \to Cl_0^- + \frac{1}{2}O_2 + e^-$$
(2)

$$\frac{1}{2}Cl_2 + e^- \rightarrow Cl^-_{(ad)} \tag{3}$$

$$\frac{1}{2}Cl_2 + e^- + V_0 \to Cl_0^- \tag{4}$$

where subscripts (ad) and O indicate species adsorbed on surface of semiconductor oxide particles and species occupying oxygen lattice site, respectively and V<sub>0</sub> indicates vacancy at oxygen site. Reactions (1) and (2), where chlorine replaces lattice or surface adsorbed oxygen yield anomalous response with resistance decreasing on exposure to chlorine. On the other hand reactions (3) and (4), where chlorine is adsorbed at surface or at oxygen vacancy site yield normal response with resistance increasing on exposure to chlorine. Results indicate that in the case of single wires that are crystalline, reaction predominantly occurs with lattice oxygen and oxygen adsorbed on surface leading to anomalous response. Additional sites for chlorine adsorption are not available due to low defect density. On the other hand, in the case of mat type sensors, there are large numbers of defect sites between the grains on which additional chlorine may be adsorbed leading to normal response to chlorine with increase in resistance.

Good sensitivity to chlorine and reduced sensitivity to  $H_2S$  for type A sensors may be understood with respect to ideal  $SnO_2:W_{18}O_{49}$  hetero-junction band diagram shown in Fig. 11 [30]. Typical values of electron affinity and work function of WO<sub>3</sub> and  $SnO_2$  has been taken from literature [31]. It is seen that electron density is enhanced in  $SnO_2$  near the junction while it is reduced in  $W_{18}O_{49}$ . The width of region with enhanced electron density (region marked as A) near junction in  $SnO_2$  is expected to cover nearly full nanowire cross-section as the diameter of nanowires is much smaller than typical depletion layer width. Typical depletion layer width on  $SnO_2$  side was calculated using the theoretical expression [32]

$$L_{\rm depl} = \frac{\varepsilon_0 \varepsilon_r}{e n_{\rm s}} (V_{\rm bi} - V)$$

where  $\varepsilon_0$  is the vacuum permittivity,  $\varepsilon_r$  is the dielectric constant of the ambient semiconductor, e is the elementary charge,  $n_s$  is the two-dimensional carrier density, V is the applied potential and  $V_{\rm bi}$  is the built-in potential. The carrier density has been taken as  $10^{17}$  cm<sup>-3</sup> and  $\varepsilon_r$  for SnO<sub>2</sub> as 15 [33]. The width on SnO<sub>2</sub> side with zero applied voltage was calculated to be 0.9 µm as compared to typical diameter of nanowires of 150 nm.

In single wire sensors, conduction takes place through SnO<sub>2</sub> wire as W<sub>18</sub>O<sub>49</sub> wires forming branches on SnO<sub>2</sub> stem are not connected to each other. From band diagram, it is observed that electrons in  $W_{18}O_{49}$  are at higher energy than those in SnO<sub>2</sub>. Response to chlorine occurs by reactions (1) and (2) taking place in  $W_{18}O_{49}$ and  $SnO_2$ . As the electrons generated in  $W_{18}O_{49}$  are transferred to SnO<sub>2</sub>, a large change in resistance of SnO<sub>2</sub> nanowire occurs, resulting in good sensitivity of Type-A sensors to chlorine. To understand highly reduced sensitivity to H<sub>2</sub>S, we note that (a) air resistance of  $SnO_2$  nanowires (with  $W_{18}O_{49}$  hetero-junctions) is reduced in comparison to pure SnO<sub>2</sub> nanowires due to electrons injected from  $W_{18}O_{49}$  and (b) interaction of  $H_2S$  with  $W_{18}O_{49}$  is low as  $W_{18}O_{49}$ nanowires are already oxygen deficient and W<sub>18</sub>O<sub>49</sub> is not as good a  $H_2S$  sensor as  $SnO_2$  [8a]. Poor sensitivity of  $W_{18}O_{49}$  to  $H_2S$  is also indicated by our measurements on  $W_{18}O_{49}$  thin films (data given above). If number of excess carriers generated on interaction with  $H_2S$  is assumed to be same (as for pure  $SnO_2$  nanowires)



**Fig. 10.** Normalized current ( $N_l = l/l_a$ ) as a function of time for mat type sensor films at room temperature on exposure to 8 ppm of different gases. Pure SnO<sub>2</sub> film exposed to (a) H<sub>2</sub>S and (b) Cl<sub>2</sub>. Heterostructure nanowire film exposed to (c) H<sub>2</sub>S and (d) Cl<sub>2</sub>.



**Fig. 11.** Energy band diagram for (a) isolated  $W_{18}O_{49}$  and  $SnO_2$  materials and (b) the corresponding heterojunction band structure for an ideal interface (i.e. charge exchange is Fermi level mediated). Ideal charge exchange results in the formation of a macroscopic negative dipole as indicated by  $\xi$ . Region A has enhanced electron density in  $SnO_2$  and region B has reduced electron density in  $W_{18}O_{49}$ . Region A with enhanced electron density may cover full nanowires as typical depletion layer width exceeds nanowire thickness.

the relative change in resistance is low due to lower base resistance. Good response to chlorine and simultaneous lower response to  $H_2S$  explains improved selectivity of single wire hetero-junction sensors.

#### 4. Conclusions

Nanowire hierarchical hetero-structures of SnO<sub>2</sub>:W<sub>18</sub>O<sub>49</sub> have been prepared by thermal evaporation technique. The density of  $W_{18}O_{49}$  nanowires was found to depend on partial pressure of oxygen and source temperature. Single wires of heterostructures have been aligned between two electrodes to make gas sensors that show high sensitivity and selective response to chlorine gas at room temperature. Improvement in selectivity is attributed to transfer of electrons from  $W_{18}O_{49}$  to  $SnO_2$  on formation of heterojunctions. The study shows potential of semiconductor oxide hetero-junctions for application to sensors and other electronic devices.

## Acknowledgement

We would like to thank Dr. Susy Thomas for her help in recording Raman spectra.

#### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.snb.2010.04.016.

## References

- (a) O. Hayden, A.B. Greytak, D.C. Bell, Core-shell nanowire light emitting diodes, Adv. Mater. 17 (2005) 701;
- (b) Q. Kuang, Z.-Y. Jiang, Z.-X. Xie, S.-C. Lin, Z.-W. Lin, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO<sub>2</sub>, J. Am. Chem. Soc. 127 (2005) 11777–11784.
- [2] (a) J.U. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures, Nano Lett. 2 (2002) 1287;
  (b) S.Y. Bae, H.W. Seo, H.C. Choi, J. Park, Heterostructures of ZnO nanorods with various one-dimensional nanostructures, J. Phys. Chem. B 108 (2004), 12 318;
  (c) C. Ye, L. Zhang, X. Fang, Y. Wang, P. Yan, L. Zhao, Hierarchical structure: silicon nanowires standing on silica microwires, Adv. Mater. 16 (2004) 1019;
  (d) L. Hu, Y. Pando, L. Zhan, Y. Yuan, T. Sekirguchi, D. Colherg, Solf accompluted

(d) J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, D. Golberg, Self assembly of  $SiO_2$  nanowires and Si microwires into hierarchical heterostructures on a large scale, Adv. Mater. 17 (2005) 971.

- [3] S. Mathur, S. Barth, Molecule-based chemical vapor growth of aligned SnO<sub>2</sub> nanowires and branched SnO<sub>2</sub>/V<sub>2</sub>O<sub>5</sub> heterostructures, Small 3 (2007) 2070–2075.
- [4] D.-F. Zhang, L.-D. Sun, C.-J. Jia, Z.-G. Yan, L.-P. You, C.-H. Yan, Hierarchical assembly of SnO<sub>2</sub> nanorod arrays on α-Fe<sub>2</sub>O<sub>3</sub> nanotubes: a case of interfacial lattice compatibility, J. Am. Chem. Soc. 127 (2005) 13492.

- [5] Y. Chen, C. Zhu, X. Shi, M. Cao, H. Jin, The synthesis and selective gas sensing characteristics of SnO<sub>2</sub>/α-Fe<sub>2</sub>O<sub>3</sub> hierarchical nanostructures, Nanotechnology 19 (2008) 205603.
- [6] C.L. Zhua, Y.J. Chenb, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe<sub>2</sub>O<sub>3</sub>/ZnO heteronanostructures, Sens. Actuators B 140 (2009) 185–189.
- [7] M. Kaur, D.K. Aswal, J.V. Yakhmi, in: D.K. Aswal, S.K. Gupta (Eds.), Chemiresistor gas sensors: materials, mechanisms and fabrication, Science and technology of chemiresistor gas sensors, Nova Science Publisher, 2007.
- [8] (a) A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett. 88 (2006) 203101;
   (b) Y.M. Zhao, Y.Q. Zhu, Room temperature ammonia sensing properties of W<sub>18</sub>O<sub>49</sub> nanowires, Sens. Actuators B 137 (2009) 27–31.
- [9] X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials, Sens. Actuators B 122 (2007) 659–671.
- [10] O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature, Sens. Actuators B 144 (2010) 56–66.
- [11] S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures, J. Chem. Sci. 122 (2010) 57–62.
- [12] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 5654.
- [13] V.V. Sysoeva, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov, A. Kolmakov, Percolating SnO<sub>2</sub> nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO<sub>2</sub> nanoparticle films, Sens. Actuators B 139 (2009) 699–703.
- [14] B. Deb, S. Desai, G.U. Sumanasekera, M.K. Sunkara, Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films, Nanotechnology 18 (2007) 285501.
- [15] D. Zhang, Z. Liu, C. Zhou, In<sub>2</sub>O<sub>3</sub> nanowire mat devices as high performance NO<sub>2</sub> gas sensors, in: Materials Research Society Symposium Proceedings, vol. 828, 2005, pp. 97–102.
- [16] Jong-Heun Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B: Chem. 140 (2009) 319–336.
- [17] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO<sub>2</sub> nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett. 5 (2005) 667–673.
- [18] V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, S.K. Gupta, J.V. Yakhmi, Copper doped SnO<sub>2</sub> nanowires as highly sensitive H<sub>2</sub>S gas sensor, Sens. Actuators B: Chem. 138 (2009) 587–590.
- [19] L. Chi, N. Xu, S. Deng, J. Chen, J. She, An approach for synthesizing various types of tungsten oxide nanostructure, Nanotechnology 17 (2006) 5590–5595.
- [20] S. Sen, V. Bhandarkar, K.P. Muthe, M. Roy, S.K. Deshpande, R.C. Aiyer, S.K. Gupta, J.V. Yakhmi, V.C. Sahni, Highly sensitive hydrogen sulphide sensors operable at room temperature, Sens. Actuators B: Chem. 115 (2006) 270–275.
- [21] J. Thangala, S. Vaddiraju, R. Bogale, R. Thruman, T. Powers, B. Deb, M.K. Sunkara, Large-Scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires, Small 3 (2007) 890–1890.
- [22] Y.F. Zhang, Y.H. Tang, H.Y. Peng, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Diameter modification of silicon nanowires by ambient gas, Appl. Phys. Lett. 75 (1999) 1842–1844.
- [23] (a) K. Senthil, K. Yong, Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing, Nanotechnology 18 (2007) 395604;

(b) G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne, Investigations of nonstoichiometric tungsten oxide nanoparticles, J. Solid State Chem. 162 (2001) 300–314.

- [24] D.Y. Lu, J. Chena, S.Z. Deng, N.S. Xub, W.H. Zhang, The most powerful tool for the structural analysis of tungsten suboxide nanowires: Raman spectroscopy, J. Mater. Res. 23 (2008) 402.
- [25] H.M. Lin, Y.L. Chen, J. Yang, Y.C. Liu, K.M. Yin, J.J. Kai, F.R. Chen, L.C. Chen, Y.F. Chen, C.C. Chen, Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires, Nano Lett. 3 (2003) 537–541.
- $\label{eq:26} [26] S. Jeon, K. Yong, Direct synthesis of W_{18}O_{49} \ nanorods from W_2N film by thermal annealing, Nanotechnology 18 (2007) 245602.$
- [27] A. Agıral, J. G. E. (Han) Gardeniers, Synthesis and Atmospheric Pressure Field Emission Operation of W<sub>18</sub>O<sub>49</sub> Nanorods, J. Phys. Chem. C, 112 (2008) 15183-15189.
- [28] A. Chaparadza, S.B. Rananavare, Room temperature Cl<sub>2</sub> sensing using thick nanoporous films of Sb-doped SnO<sub>2</sub>, Nanotechnology 9 (2008) 245501.
- [29] (a) J. Tamaki, J. Niimi, S. Ogura, S. Konishi, Effect of micro-gap electrode on sensing properties to dilute chlorine gas of indium oxide thin film microsensors, Sens. Actuators B: Chem. 117 (2006) 353–358;

(b) M.D. Mahanubhav, L.A. Patil, Studies on gas sensing performance of CuO-modified  $CdIn_2O_4$  thick film resistors, Sens. Actuators B: Chem. 128 (2007) 186–192.

- [30] (a) J.F. Wager, Transparent electronics: Schottky barrier and heterojunction considerations, Thin Solid Films 516 (2008) 1755–1764;
  (b) J.A. Spies, R. Schafer, J.F. Wager, P. Hersh, H.A.S. Platt, D.A. Keszler, G. Schneider, R. Kykyneshi, J. Tate, X. Liu, A.D. Compaan, W.N. Shafarman, Pin double-heterojunction thin-film solar cell p-layer assessment, Solar Energy Mater. Solar Cells 93 (2009) 1296–1308.
- [31] (a) M. Chen, X. Xia, Z. Wang, Y. Li, J. Li, C. Gu, Rectifying behavior of individual SnO<sub>2</sub> nanowire by different metal electrode contacts, Microelectron. Eng. 85 (2008) 1379–1381;

(b) A. Subrahmanyam, A. Karuppasamy, Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO<sub>3</sub>) thin films, Solar Energy Mater. Solar Cells 91 (2007) 266–274.

- [32] D. Reuter, C. Werner, A.D. Wieck, S. Petrosyan, Depletion characteristics of twodimensional lateral *p-n*-junctions, Appl. Phys. Lett. 86 (2005) 162110.
- [33] V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Toward the nanoscopic "Electronic Nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors, Nano Lett. 6 (2006) 1584.

## Biographies

**Dr. Shashwati Sen** joined BARC in 1996 and completed her PhD from Mumbai University in 2003 on high temperature superconductors. Currently she is working on the growth of various inorganic nanostructures and their application as toxic gas sensors.

**Miss. Prajakta Kanitkar** has taken BSc and MSc in Physics from Pune University and currently pursuing her Ph.D. in Physics. Currently she is working on metal-metal oxide nanoparticles synthesis and their characteristics.

**Ankit Sharma** is doing his Integrated MTech in Nanotechnology from Amity Institute of Nano Technology.

**K.P. Muthe** completed his MSc in 1986 and has joined BARC. He has worked on high temperature superconductors, gas sensors and currently interested in dosimetric application of alumina by investigating its thermo luminescent properties.

**Ashutosh Rath** has completed his MSc from Utkal University Orissa and currently doing his PhD at Institute of Physics, Bhubaneshwar. He is interested in TEM investigations of nanostructures.

**Dr. S.K. Deshpande** obtained PhD in physics from University of Pune in 1994 and worked at the Institute for Plasma Research, Gandhinagar, on Tokamak plasma spectroscopic diagnostics. Later, he was a lecturer at the Department of Physics, University of Pune. Currently, he is working as scientist at the Mumbai Centre of UGC-DAE Consortium for Scientific Research. He is involved in research and developmental work on neutron and X-ray diffraction, and dielectric studies.

**Dr. Manmeet Kaur** received her PhD from Devi Ahilya Vishwavidyalaya, Indore in 1998. Her thesis work involved effect of heavy ion irradiation on high temperature superconductors. She joined Bhabha Atomic Research Centre, Mumbai in 1999 as Dr. K.S. Krishnan Research associate and is presently working as Scientific Officer. Her present interests include development of metal oxide thin films and nanomaterials for sensing toxic gases.

**Prof. R.C. Aiyer** graduated from the Pune University with B.Sc. in Physics, and M.Sc. in Electronics and received her Ph.D. in Physics from Pune University in 1979, and is currently working as a Professor of Physics in the University of Pune, India. Her research interests are sensors, microwaves, laser applications, resonators and non-linear optical properties of quantum dots. Prof. R.C. Aiyer has published 80 research papers in peer-reviewed international journals.

**Dr. S.K. Gupta** joined BARC in 1975 and is presently Head of Thin Films Devices Section in TPPED. Over the years, he has worked on space quality silicon solar cells, high temperature superconductor thin films and single crystals, gas sensors and thermoelectric materials. He has carried out extensive studies on vortex dynamics in superconductors. He is a member of the National Academy of Sciences, India.

**Dr. J.V. Yakhmi**, Head, Technical Physics and Prototype Engineering Division, has worked in BARC for the past 37 years on diverse areas of research in materials science, such as, high Tc superconductors, magnetic alloys, molecular materials, etc.